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Exact correlation functions of Bethe lattice spin models in external magnetic fields
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We develop a transfer matrix method to compute exactly the spin-spin correlation funsiegisof Bethe
lattice spin models in the external magnetic fieldnd for any temperaturg. We first compute sys,,) for the
most general spil% Ising model, which contains all possible single-ion and nearest-neighbor pair interactions.
This general spir§ Ising model includes the spibsimple Ising model and the Blume-Emery-GriffittBEG)
model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length
&(T,h) for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as
h—0 and T approaches the critical temperatufg. Our method to compute exact spin-spin correlation
functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.
[S1063-651%98)13708-X

PACS numbd(s): 05.50+4q, 75.10-b

[. INTRODUCTION ture. In this paper, we develop a transfer matrix method to
compute exactly the spin-spin correlation functidisssy)
Bethe[1] and the Bethe-lik¢2] lattices have been widely for the most general spi§-model on the Bethe lattice for
used in solid state and statistical phys[@&-1§], as they any temperature$ and external fieldh. The model includes
represent underlying lattices for which many problems carihe Ising mode([30] and the Blume-Emery-Griffith6BEG)
be solved exactly. The Bethe lattice has attracted particulamodel[31] as special cases. The correlation leng(f,h)
interest because it usually reflects essential features of sygbtained from the spin-spin correlation function shows inter-
tems, even when conventional mean-field theories[ 4. esting scaling and divergent behavior las>0 andt—0,
Besides thermodynamic quantities such as the magnetizavheret=(T—T.)/T, [32]. Our results thus solve a long-
tion, the specific heat, etc., the correlation function containstanding puzzle in the critical phenomena of the Bethe lattice

important information about a phase transition sys{ési, Ising model. Our method may be applied easily to other
and is often studied by theoretical calculatig@®—25 and  Bethe lattice spin models.
experimental measuremer(t86—29. It is widely believed Although the free energy of the Cayley tree Ising model

that the singular behavior of physical quantities at the criticain zero external magnetic field is an analytic function of the
temperaturdl ; of second order phase transitions is related tademperature, the magnetizatiom and the magnetic suscep-
the divergence of the correlation lengfrat T, [19]. In con-  tibility x of the central spinsy of the Bethe lattice Ising
nection with this, a knowledge of the exact form of the spin-model have singular behaviors with the critical exponents
spin correlation function is very crucial for locating phase 8=3, =3, anda=0 [30]. However, there is no previous
transitions and for analytical investigations of physical phe-calculation which shows thaf of the Bethe lattice Ising
nomenon. Furthermore, for many experiments, spin-spin comodel has a singular behavior. Our work shows clearly §hat
relation functions are most relevant, since they are measurativerges at the critical point ah and y for the Bethe lattice
by standard probes such as linear response to an adiabaticleing model.
isothermal applied field, or scattering of neutrons or electro- The difference between the Cayley tree and the Bethe
magnetic wave$26]. In the past several years, considerablelattice was discussed by Bax#30]. In the Cayley tree, the
progress has been achieved in the computation of the corrgurface plays a very important role because the sites on the
lation function of statistical mechanical systerf20,27. surface comprise a finite fraction of the total sites even in the
However, spin-spin correlation functions are exactly knownthermodynamic limit. As a consequence, the spin models on
only in a few models, including the two-dimensional Ising the Cayley tree exhibit quite unusual types of phase transi-
model in zero magnetic field and at any temperat§gdd, tions without long-range ordg23—-25; the calculated cor-
and the planar Ising model in a magnetic field and exactly atelation functions do not show a singular beha\i®8—25.
T. [22]. To overcome this problem, one usually considers only prop-
A long-standing problem of statistical mechanics is theerties of sites deep in the intericaway from the surfageof
exact solution of the spin-spin correlation function for thethe Cayley tree. The union of such equivalent sites, with the
Ising model in an external magnetic field and at any temperasame coordination numbeg can be regarded as forming the
Bethe latticd 30]. Thus the Bethe lattice is assumed to have
translational symmetry like any regular lattice.
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1063-651X/98/58)/164410)/$15.00 PRE 58 1644 © 1998 The American Physical Society



PRE 58 EXACT CORRELATION FUNCTIONS OF BETH . .. 1645

is different from the mean-field critical exponent % con- 2s

sidered by Tsallis and Magalken a recent review paper Hi(si,s)) = E JSis) 2
[10], but is consistent with the critical exponent of the local- mr=1

ization length associated with density-density correlator in|_|
the Bethe lattice Anderson model obtained by a supersym-
metry method[8]. Our result gives independent support to 2s

the idea that the mean-field approximation and Bethe lattice Hao(s)= >, h,st. (3
approach are not equivalent in princiglel]. In this paper w=1

we also analyze exact spin-spin correlation function for th
BEG model[31], and find that at the tricritical point{

»(sj) includes all possible single ion interactions:

Srhere areS(2S+ 1) independent nearest-neighbor coupling
PR I A _1 constants {,,) in Eq. (2), and 2S external fieldsh, in Eq.
t"%, with the tricritical exponent, L2 . . F3). Hamiltonian(1) can describe a variety of different mod-
Thus we have solved a long-standing puzzle in the critica

phenomena of the Bethe lattice Ising model. Our approacﬁls' The partition function has the form

can be extended easily to other modgétstts, Ashkin-Teller,
etc) on Bethe and Bethe-like lattices. In particular, our re- z=>, eXP{Z Hi(s ,Sj)+2 Hy(s)) ;. (4)
sults for the Ising model on the Bethe lattice can be extended s} {n !

easily to Husimi lattices, because they can be related with
each other in terms of the star-triangle transformat@e.

The outline of the paper is as follows: In Sec. Il the most
general spirs model is defined, and the spin-spin correlation
function of this model is evaluated in a closed form. In Sec
Il we analyze the exact correlation function of the Bethe
lattice spins Ising model and discuss the critical properties.
In Sec. IV the critical behavior of the spin-spin correlation
function is analyzed for the spin-1 Ising model on the Bethe
lattice. In Sec V a brief discussion of our results is pre- ZNZE exp(—,BH)=SE exp{Ha(so)}aN(S0), (B
sented. 0

The advantage of the Bethe lattice is that, for models
formulated on it, exact recursion relations can be derived.
The calculation on a Bethe lattice is done recursi@g].
When the Bethe lattice is “cut” apart at the central site 0, it
'separates intg identical branches, each of which contains
g—1 branches. Then the partition function of the model can
be written as

where sy is a spin in the central sitd\ is the number of
Il. MOST GENERAL SPIN- S MODEL generations Nl—« corresponds to the thermodynamic
limit), and gy(Sp) is in fact the partition function of one
Ising-type models with a spin greater thanhave rich  branch. Each branch, in turn, can be cut along any site of the
fixed-point structures. The great interest in these modelfirst generation which is nearest to the central site. The ex-
arises partly from the unusually rich phase transition behavpression forgy(s,) can therefore be written in the form
ior they display as their interaction parameters are varied,
and partly from their many possible applications.
A spin-1 Ising model was initially introduced by BEG gN(SO):%: exp{H1(So,S1) + Ha(s1)}9%-1(s1).  (6)
[31] in connection with phase separation and superfluid or-
dering in *He- *He mixtures. The BEG model has played anwhere y=q—1.
important role in the development of the theory of multicriti- ~ Consequently, we have S 1 recursion relations for
cal phenomena associated with various physical systemg(sy), where s, takes values £S,—S+1,....S—19).
[33], and has been extensively investigated in the literatur@fter dividing each recursion relation by the recursion rela-
[6,7]. tion for gn(S), we have & recursion relations foxy(sp):
The spin3 Ising model with dipolar and quadrupolar in-
teractions was first introduced to explain phase transitions in

Y

DyVO, by Sivardiere and Blumg34], and a different spin- 321 expH1(So,81) + Ha(S1) X 1(S1)
3 Ising model for ethanol-water-carbon-dioxide was intro- Xn(Sp) = , (D
duced by Krinsky and MukamgB5]. Another spin3 Ising 2 exp{H1(S,s1) +Ha(s1) X% 1(81)
model was investigated by Barreto and De Alcantra Bonfim 1
[36].

Let us define the most general s@nmodel by the where
Hamiltonian Xn(S0) = On(S0)/In(S) ®

and the equation fogy(S) is
_IBH:<Z> Ha(si,s)+ > Hals), 1) "
ij [

NS =0%-1(S) 2 exp{H1(S,51) +Ha(s)PR-1(50)-
where 8= (kgT) %, ands; is a spin variable which takes a ' 9)
value on{—S,—S+1,...,S—1,S}. The first sum goes over
all nearest-neighbor pairs of the Bethe lattice, and the second Since the right-hand side of E¢?) is bounded by, it
over all sites. Hy(s;,s;) contains all possible nearest- follows thatxy is finite for N—c. Throughxy, obtained by
neighbor pair interactions, and can be written as Eq. (7), one can express the density, = ((s,/S)*) of cen-
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tral site (the symbol{---) denotes the thermal average pointed magnetizatiom. Equations(7) and(10) are funda-
whereu take values from 1 to & mental equations for the spBmodel on the Bethe lattice.
For calculating the spin-spin correlation function, it is
m.|

now convenient to write down the expression for partition
function in the following form

and other thermodynamic parameters. Xgﬁ(so)gﬁ,ill(sl) .. .gK,ZﬁH(sn_l)gK,_n(Sn),

So we can say thaty in the thermodynamic limit I{ (11)
— ) determines the states of the system. For this reason the
recursion relations foxy given by Eq.(7) can be called the wheren denotes the number of steps from the central point
equations of state for the sp#imodel on the Bethe lattice. 0. Summing overs,,S,_1,...,5; consistently, we obtain
For example, at high temperatures the recursion equéfjon Eg. (5) again. Then the two-spin correlation function be-
tends to a fixed point, and therefore the system has an apweens, ands,, I'(n) = (1/S?) (SoS,), can be written as

>, shexp{Ha(so)}x¥(so)

So

S—SO)M> = é , (10 n—-1 n
>, explHa(so)}x¥(so) = X i exp( ;0 Ha(s; .si+1>+i§0 Ha(s)

So SQSLy -« v

n—1 n

> ] sosnexp( 2,0 Hl(si,si+1)+i§) Hz(si))xm(so)XK11(51)~--X%%H(sn1)xmn(sn)

2 =T ) (12
> . exp( EO Ha(s; ,si+1>+i:20 H2<si))xm<so>xmi(sl)---xmwsn1>xmn(sn>

We will show below that the calculation d6ys,) can be performed by a transfer matrix method. Other techniques for the
calculation of the spin-spin correlation function are not able to give the correlation in the presence of an external magnetic
field. For example, the results obtained in REZR—25 are appropriate only fdn strictly equal to zero without any symmetry
breaking effects. It should be noted that in order to obtain results which are relevant for the Bethe lattice, we must use the
proper thermodynamic limilN— o,

The properties of the Bethe lattice can be investigated by considering a Cayley tree with a very large number of generations
(N), and one looks only at the thermal ensemble of the sites in the interior part of the fjesterations. Then the limN
—oo s taken beforan— o,

We are interested in the case when the series of solutions of recursion relations givern(ycBgverges to a stable point
asN—oo, In the thermodynamic limitNl—«), we may expect thaty_, does not depend am, so thatxy_,, andxy can be
regarded as the same fixed-point solutignsf recursion relations given by E7), which corresponds to the behavior in the
interior part of an infinite Cayley tre@.e., the Bethe lattice In this case

lim Xn_n(S)=X(S)

N— oo

for all finite n. Then the recursion equatiofsquations of stajebecomes

SE exp{H1(sg,S1) + Ha(S1)}x7(s1)

X(Sg) = , (13
> exp{H1(S,51) +Hy(s1)}x7(sy)

S1

and the spin-spin correlation functidi(n) given by Eq.(12) takes the form

n-1 n

> sosnexp( 2, Ha(sisi)+ 2 H2<si>)x7<so>x7—l<s1>---x7—1<sn_1>x7(sn>

F( )__ n—1 n (14)
> exp( 2 Ha(sisin)+ 2 H2<si>)x7(so>x71(s1>---x“<sn_1>xy(sn>
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The correlation function of Eq14) can be expressed in After some algebraic manipulations, using E4s), (15),
the vector-matrix form. For this purpose, let us introduce aand(16), we may write the correlation function of E¢L8)
(25+1)X(2S+1) matrixV and a (5+ 1)-component col- as

umn vectorR. The elements oY are given by )s

C(n)=m2+ >, AR, (19
[x(s)x(s")] 7", =

(15  wherel =Ny 1/N1. An explicit expression foAy is given in
the Appendix. It should be noted that the obtained exact

Vg = exp( Hi(s,s')+ w>

wheres ands’ independently take value3,S—1,...,—S  expression for the spin-spin correlation function depends on
+1,—S. The vectorR and transposed vect®' have ele- the ratios of the eigenvalues/\;. Thus Eq.(19), together
ments with Egs. (10) and (13), give us full set of equations for

investigation spirs model on the Bethe lattice. In the fol-

lowing we turn to various examples.

re= exp{HzT(S) xtD2(s), (16)

Let us also introduce the diagonal matBx

lIl. SPIN- 5 ISING MODEL

We first consider a spig4sing Hamiltonian at a tempera-
1 0 0 ture T and an external magnetic field

0 371 .. —BH=43 s5+2h, s, (20
S & i

wheres,= +3 or — 3 and the first term describes the ferro-
0 o - -1 magnetic coupling (4) between the spin at siieandj.
For the magnetizatiomg, = 2(s,)) of the spin in the cen-

) o ) _ tral site, from Eq.(10) we can obtain the following expres-
With these definitions, we may rewrite Eq4l4) in the  gjon:

vector-matrix form
exp(2h) — x4

Hm="wmr (17 ml_engh)erq' @)

o ] wherex is the fixed point of the recursion relatiofs3) in
The transfer matri¥ is real symmetricYsg =Vgs), and e thermodynamic limit

can be diagonalized by the transformation
X exp2J)—1

exp2J)—x (22

AN, O .- 0 x4~ texp(—2h) =
0 A, - 0

. . The two-spin correlation function for the spjnising
model can be obtained from E({L9),

P lvp= : . :
0 0 - Azseg

n

, (23)

2 A2
I'(n)=mi+A; .
whereP is a (2S5+1)X(2S+1) matrix with the elements 1

Psy andXi, No, ..., and\,g,, are the eigenvalues of the _ . 12
matrix V. These eigenvalues can be obtained from the charth A1=1-my (see the Appendkx andi, and, are the

i ; . : . : igenvalues of the 22 matrix V.
acteristic equation. Then the spin-spin correlation function o )
. The elements o¥ are given by
Eqg. (17) can be written as

Vg =exp4Jss +hs+hs)[x(s)x(s')] 712, (24

RTSPLP ISR
I'(n)= RTPLP 'R ' (18) wheres ands’ independently take values1:
. . . Vi, V,_
wherelL is a (25+1)X (2S+1) diagonal matrix _
V=\v_, v__
)\fl1 o -- 0
0 A} - 0 The eigenvalues of the matriX can be obtained from the
L= . characteristic equation
0 0 -+ A1

N=N(V,,+V__)+V,. . V__—-V?=0. (25)
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Using Egs.(22) and (24), we find that

exp(J+h)

)\122 &ni’(ZJ)m,

(26)
exp(J+h)

)\2:[2 COSNZJ)—X—Xil]m.
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havior near the critical point. While the Ising model on the
Bethe lattice exhibits, in general, a mean-field-like phase
transition with “classical” exponents, the critical behavior
of the correlation length near the transition point coincides
with the correlation length behavior in a one-dimensional
chain with a critical exponent=1, which differs from its
“classical value” v=13 [10]. The similar behavior of the
localization length associated with the density-density cor-

Thus the spin-spin correlation function can be expressed exelator can be observed in the Anderson model on the Bethe

actly as
T'(n)=m3+(1—-m)\", (27)

where

Ny 2cosh2))—x—x"*
TN 2 sinh(2J) ’

(28)

m, is the magnetization of the spin in the central site give
by Eg. (21), andx is the solution of the recursion relation
given by Eq.(22).

It is well known that the Ising model on the Bethe lattice
exhibits ferromagnetism, with a critical pointlat=0, x=1,
andT=T., whereJ.= 3In[g/(q—2)], and critical exponents
B, 8, and a have the “classical” valueg=3, §=3, and

n

lattice [8].

If h andt are both sufficiently small in the critical region,
then, based on Eq&22), (28), and(31), the general behavior
of the correlation lengtly should be described by a scaling
function F

£=t F(ht” %/?), (32

whereF(x) = (f;+ f,x%3) ™1, with

_a(a-2)
2(q-1)

a(g—2)
(q—1)2

q

|nq_—2

fi and f3=9

For a smallh>0 andt—0, from Eqg.(32) we obtain the
result

a=0 [30]. Let us now consider the general behavior of the

spin-spin correlation function in the critical region.

First consider the casds=0 andT=T,.. From Eq.(27),
we obtainI'(n)=(g—1)"". Let us consider a Bethe lattice
with a coordination humbeq, whose dimension is defined
by d,,=(InC,/Inn) which tends to infinity withn—oo for q
>2 and equals 1 fog=2, whereC,=[q(q—1)"—-2]/(q
—2) is the total number of sites. We should note thatdor

=2 the Bethe lattice becomes the ordinary one-dimensional

chain. In the limit of largen, d,, for all g>2 becomes

d

n | 1
mn(q— ).

Thus we can write, for larga,
Ir'(n)=(q—1)""=n"¢9 (29

Near the critical point, setting, as usutd (T—T.)/T,,
we find that the spin-spin correlation function is

-3
exp — =
£
r(n)=—75—, (30
n
where the correlation length is given by
it o ||
&= “g=on| | q—1C0t1+t
a-1
~ 1" 31
9(a-2)3 (31

Thus, we find that the correlation lengghincreases as the
critical point is approached according fo-t™”, with the
critical exponentv=1. It is interesting to note that the cor-
relation lengthé shows interesting scaling and singular be-

g=fth23 (33)
i.e., the critical exponent i$.

The bulk susceptibility per lattice site or the linear re-
sponse against the field is derived from Hg1) as y
(q—1)[2 cosli2d)—x—x"1]] ¢
2sinh(2J)

omy .
X= 2 =Xo

Xo

EECEY (39

where x, is nonsingular part of the magnetic susceptibility,
and is given by

_,,[2 costi2d) —x—x"1][2 exp2]) —x—x "]
sinN(2J)[x+x 1—2 exg—2J)]?

)(0226

=(1-md)(1+\). (35
Thus, the magnetic susceptibilify can finally be written in
the simple form

(1-mf)(1+))

T—(q-Dx (%9

X:

By means of the fluctuation reIatio;azE(F(n)—mi),
we can recover Eq(36) through Eq.(27). To prove this
statement let us consider in more detail the fluctuation rela-
tion

x=lim

N—oo

N%%“ §<<sisj>—<si><sj>>, 37
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where the sum goes over all pairs of sites on the Bethe lat- X~E&.
tice, andN; is the total number of sites. To carry out the
summations in Eq(37), we first note that by definition all

sites on the Bethe lattice are equivalent, and consequently, IV. SPIN-1 ISING MODEL
(si)=(s0), Let us consider, for example, a spin-1 Ising model, which
is known as the Blume-Emery-Griffithi@EG) model [31].
iEj (sisJ-):Ns; (S0S;)- The BEG model on the Bethe lattice was studied in Refs.

[6,7]. The model has played an important role in the devel-
] ] ] opment of the theory of tricritical phenomef3].
Using these relations we may rewrite £g7) as The Hamiltonian of the spin-1 Ising model on the Bethe
lattice is given by
. 1 2
x=lim 2 §(<Sosj>_<so> )
N— oo
—BH=32 si5+KX, s?s’—A> s?+h> s,
n (ij) (ij) [ i
= lim 3, cT(j)~m], (38 (4D
n—o =
where=(kgT) ! ands,=+1,0—1 is the spin variable at
wherec; is the number of sites which issteps away from sitei. The first term describes the ferromagnetic couplidiy (

the central site 0, between the spin at sitesand j, and the second term de-
_ -1 _ scribes the biquadratic couplind<}. Both interactions are
¢j=a(a—1) (Co=1), (39 restricted to theg nearest-neighbor pairs of spins. The third

I'(j) is the spin-spin correlation function given by A7), term describes the single ion anisotrapyand the last term

andm,=(sp) is the magnetization of the spin in the central represents the effects of an external magnetic.fihbd (
site. This model has two _order parameters: one is the thermal
Substituting Eqs(27) and (39) into Eq. (38), we find average of the total spim;=(sy) and the other is the qua-
drupolar momenm,=(s2) which reflects the possibility of

n phase separation. These order parameters are expressed by

x=lim(1-m?)| 1+ > q(q—1)/ "1\
i=1

n—ow

expth—A)y%—exp—h—A)x?

I+ [(g—1)A]"2 ml:1+exp(h—A)yq+exp(—h—A)xq’ “a
I—(qg-Dn P 1=(g=1n

= lim (1—m2)
(40)
expth—A)y%+exp—h—A)x9

It is now clear that the susceptibilityy diverges for m,= . 43
(q—1)A=1, and given by Eq(36) for (q—1)A<1. From 1+exph—A)yd+exp—h—A)x*

Eqg. (36) we can easily establish the relation between the

susceptibility y and the correlation lengt§ in the critical  From Eq.(12) we can obtain the following expression for the

region first-neighbor spin-spin correlation functigsgs;)

(eZhy2y+ e72hx2‘y)e(J+K72A)_ 2X'yy'ye(f.]+ K—2A)

(S81)= 1+2(eMy7+ e Mx7)e~ 2+ (e2My27+ g~ 21x27) eI+ K=28) _ oy yvg(—I+K-24) (44)

where u(l+a)+a
m=-—v——5—, (45)
G im INCE) b+u®+ap?
x= lim and y= Ilim .
. 9n(0) . 9N(O)
N ON N-ox O u(u+1)+av? 9
m e —
Let us introduce the new variables 2 b+ u2+ap?
X—y X+ty—2 and
V=% and u= > ;
bu?+a3(b+1)v?
(sos1)= (47)

then we obtain ab(b+u?+av?) ’
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whereu andv are the solution of the recursion relation given

by Eqg.(13) in the thermodynamic limiti|—):

u—av({u+l+yp\9-?t
exp(2h) = utav\u+l-v ’ “9
4(b—u)® 2_219-1
GXQZA)ZW[(U‘F].) -V ] , (49)
u-—a‘v

andb anda are the following constants:
b=exp(K)coshJ)—1,

B expK)coshJ)—1
~ exp(K)sinh(J)

It follows from Eq. (19) that the spin-spin correlation
function for spin-1 Ising model can be written as

(50

2 A n
F(n=m+ Y, A, ;“) ,
k=1 1

whereA; andA, take the formgsee the Appendjx

~ Ng(my—mi) —\y((SoSp) —m})
! A3—Ap

and

~ Ap(my— M) —\1((SSy) — mMY)

with my, m,, and({ses,) given by Egs.(45), (46), and(47),
respectively. The eigenvaluas, \,, and\ ; of the symmet-
ric 3X 3 matrix V

Vll V12 V13
Viz Va2 Va3
Vig Va3 Vg3

V:

can be obtained from the characteristic equation
(V11— N) (V22— M) (V33— N) +2V Vi3V 53
=V34(V11—=N) + Vi Vor—N) + VA Vga— ).

The elements of the matriX are given by
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u, (ab+a+b)(u’+u—av?

C: -
2b 2ab[(u+1)%-v?]

and
_ (b—u(u?-a%?)
ab[(u+1)2—p?]’

The global phase diagram of the spin-1 Ising model on the
Bethe lattice was studied in detail in Ref6,7]. The A line
of the phase transition in thd (K, andA) space is given by
conditions

h=0 and expA,)= (Uugt+1)9-1,

2(b—uy)
. (53

C

where

a
Ue= —i-a’
In terms of theT, A, /J, andK/J, Eq. (53) of the A line
implies a relationT=T_(A , /J,K/J), which locates the criti-

cal temperature as a function 4fy, /J andK/J.

The critical line starts ah , — —, T./J=3In[g/(q—2)],
which corresponds to the critical temperature of the gpin-
Ising model. We note that foA — —oo, the states;=0 is
suppressed, and Hamiltonighl) reduces to the spif4sing
model with interaction) and external magnetic field. For
certain values oK/J the system possesses a tricritical point
at which the phase transition changes from the second order
to the first order. A tricritical point satisfies the equat{ah

s+l 2+q—3 1 (54)
B—uc q 2q uc.
In particular,
J_1|q(3q—2) h K_1
T 2"3q-2 "N IC
and
J _1I —q+6+/499%—36q+ 36 H 3
ﬁ—z 1 6(q—2) Wi enj— .

Let us now consider the general behavior of the spin-spin
correlation function in the critical region. First consider the
caseh=0 (v=0); then we have

s?2+s'2  s+s’
Voo =exp Jss +Ks?s'2— A +h——
2 2 u(u+1)
P I'(n)= A",
X[x(s)x(s")]"" V"2, (51) uz+b
where s and s’ may independently take values with
+1, 0, and-—1.
Using Eqs.(49), (49), and(51), we find that N = A u
b N a(u+l)’
— — [~2
hl_b_u’ A2g=(CENCT=D)Ay, (52 On the critical line T=T,, h=0, andA=A,) given by

where

Eq. (53), the spin-spin correlation function can be expressed
as
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n

r( Uc(us+1) U
n)=
Ug-’-b a(uc+1)
a(q—1) _
= (-1 " (55)
a‘+b(g—1-a)
By analogy with the spis-case, we can write
a(q—1
r'(n)= (q—)n*d, (56)
a’+b(q—1-a)

where d is the dimension of the Bethe lattice. Fo/J
=2In[g/(q—2)] , we obtainI’(n)=(q—1)"", which corre-
sponds to the case of the sgirising model. In the critical
region,I'(n) has an asymptotic decay of the form

L)~ —,

(57)

where¢ is the correlation length and is given by
1 -1

n————

(q=1)(N2/N9)

Near the critical A line, settingu—u;,=(u;+1)48, v
=(us+1)e, and T=T¢(1+t), the h, A, and A, may be
expanded, for smalb, ¢, andt, as

(¥*-1)
3

g:

hot—(a—1)6+

h=ye e?+(a%-1)6°

4

—(yza—1)825+75_ e, (58)
-1 a?-b?-
A=By=-Agt+(y-a-b)o+y et = L5
3
-1
—(ya—l)y£25+yy et (59

wherey=q—1,a=(u,+1)/u;, b=(u;+1)/(8—u.),

 Jo(expK—coshl) —Ksinhl,
O (expKcoshl,—1)sinh),

and
J.sinh).+ K coshl,
¢ expK.coshl,—1

Ag=exK

Consider the case whem=0 andA=A,. From Egs.
(58) and (59), we obtain

Cit=C,8+C362, (60)
with
1ot gyt A g ey
and
C_az—bz—y 3y 1 3y(y*—y-3) 1
a= Bl

2 ytlue 4(yP-D(y+D) i
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It is easy to see from Eq$54) and(60) that in all points on
the2A line, t~ &, except for the tricritical point, wheré
~ 6.

Using a Taylor expansion of the expression for the corre-
lation length& by smalle, 8§, andt, and Eqs(54) and (60),
we find that the correlation lengthincreases as the critical
point is approached according to~t~ 1, with the critical
exponentr=1, everywhere on thd line except the tricriti-
cal point, wheret~t~ 2 with the tricritical exponeni;,= 3.

V. SUMMARY AND DISCUSSION

Let us now briefly summarize our results. In this paper we
consider the most general spgthmodel on the Bethe lattice
in the external magnetic field, and use the transfer matrix
approach to derive the spin-spin correlation function. The
general spirs model includes the spig-simple Ising model
and BEG model as special cases. From the exact spin-spin
correlation functiond’(n) of the Bethe lattice Ising model
and BEG model in an arbitrary magnetic fididdand tem-
peratureT, the correlation lengtl§ has been determined ana-
Iytically. In the critical region the correlation lenggof the
simple Ising model is inversely proportional to the distance
(T—T,)/T, from the critical point. Such a singular behavior
coincides with the correlation length behavior in the one-
dimensional chain. We also obtain that near the transition
point the magnetic susceptibility is proportional to the corre-
lation lengthé.

Recently, Gujrat{11] showed that in many cases the be-
haviors on Bethe or Bethe-like lattices are qualitatively cor-
rect even when conventional mean-field theories fail. By a
proper choice of these lattices, it is possible to satisfy frus-
trations, gauge symmetries, etc., which are usually lost in
conventional mean-field calculations, because of the lack of
correlations. Such correlations are present on the Bethe-like
lattices, and in this paper we have given the exact expression
for such correlations.

It should be noted that we can obtain the proper singular
behavior of¢ because we have used the proper thermody-
namic limit (N—<) to obtain the recursion equations and
correlation function, i.e., Eq9.13) and (14), for the most
general spirs model on the Bethe lattice, and we have dem-
onstrated the crucial role of Bethe lattice dimensionality in
determining critical behavior of the correlation length.

In conclusion, it must be remarked that the transfer matrix
methods discussed in this paper can be extended without
difficulty to obtain correlation functions with singular corre-
lation length for other spin models, e.g., Potts model, the
multilayer Ising model, the Ising model with competing
nearest-neighbor and next-nearest-neighbor interactions, etc.,
on Bethe and Bethe-like structures. This approach should be
applicable for gauge models on generalized multiplaquette
hierarchical structures as well.
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APPENDIX
The coefficientA, (k=1,2,...,2S) can be obtained by

solving the following system of linear algebraic equations

gl:A1+A2+ e +A23,
92=Asl1+ Azl + - +Azdl s,

A 125-1 25-1 25-1
O2s= A1l THAT T+ AN,

where
gk=(seSx_1)—m? for k=1,2,...,25,

andlkEAk+1/)\l.

Let us introduce the elementary Lagrange interpolation

polynomials
23 ,_, 28
Li(l):jljlﬁ:jzl aij“_l, i=12,...,25,
j#i

which satisfyL(l;) = 8;; , whereg;; is the symbol Kronecer.
Now, it is evident that

2S
Ak: 2 akjgj y k=l,2,. . ,2S.
=1

The elements ody; are
L VR
TP

whereP,(l) is 2S—1 degree polynomials defined by

2S
Ph=II a-1), k=12...,28
2k
and F(k) is the elementary symmetric function ir52 1

variablesl 1,15, ...l 1, 0ke1s -2 log
FZS:11

Fos—1=lit -+l gt gt Flas,

Fi=l1. . eedlgsr - lase
Thus the coefficienté,, will take the form
2s
2, (1F(k

A==,

[T a1

=1

i #K.

Examples follow.
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1.8=1

Ar=g1=(s§)—mi=1-mi. (A1)
For the spin} Ising model,(s)=1.
2.5=1

1,91—9>
AT
2 1

_ Ng(m—mf) —A((Sosy) —mi) w2
A3—A2

and

1191— 02

SN

No(My—m3) =\ 1((SoSy) — M)

= ; (A3)
Ao— A3

wherem,=(s2).
3.5=3

(SoSn)—Mi=Aql 7+ A5+ A4l 7,
with

:|2|391—(|2+|3)92+93
! (=1 (I5=19)

and

A=A(lhely),  Az=A(liely),

where g3=(sf)~m?, ;= (sos:)~mi. and gs=(sosy)
—mj.

4.5=2

<Sosn>_m§:A1|2+A2|g+A3|g+A4In,

_ F191—F20,+F303—F404
Y (=)= 1) (a=1p)

with
Fi=lolsla, Fo=lolg+lsl+151,,
Fa=l+13+1,,
Fs=1
and

A=Aq(l1ely)  for k=2,3,4,

where 91:<3r2)>_mi- 92:<3051>_m§1 g3=(S0S2)

—mf, andg,=(seSs) —ms.
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