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Exact correlation functions of Bethe lattice spin models in external magnetic fields

Chin-Kun Hu* and N. Sh. Izmailian†

Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
~Received 6 March 1998!

We develop a transfer matrix method to compute exactly the spin-spin correlation functions^s0sn& of Bethe
lattice spin models in the external magnetic fieldh and for any temperatureT. We first computês0sn& for the
most general spin-S Ising model, which contains all possible single-ion and nearest-neighbor pair interactions.
This general spin-S Ising model includes the spin-1

2 simple Ising model and the Blume-Emery-Griffiths~BEG!
model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length
j(T,h) for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as
h→0 and T approaches the critical temperatureTc . Our method to compute exact spin-spin correlation
functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.
@S1063-651X~98!13708-X#

PACS number~s!: 05.50.1q, 75.10.2b
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I. INTRODUCTION

Bethe@1# and the Bethe-like@2# lattices have been widely
used in solid state and statistical physics@3–18#, as they
represent underlying lattices for which many problems c
be solved exactly. The Bethe lattice has attracted partic
interest because it usually reflects essential features of
tems, even when conventional mean-field theories fail@11#.

Besides thermodynamic quantities such as the magne
tion, the specific heat, etc., the correlation function conta
important information about a phase transition system@19#,
and is often studied by theoretical calculations@20–25# and
experimental measurements@26–29#. It is widely believed
that the singular behavior of physical quantities at the criti
temperatureTc of second order phase transitions is related
the divergence of the correlation lengthj at Tc @19#. In con-
nection with this, a knowledge of the exact form of the sp
spin correlation function is very crucial for locating pha
transitions and for analytical investigations of physical ph
nomenon. Furthermore, for many experiments, spin-spin
relation functions are most relevant, since they are meas
by standard probes such as linear response to an adiaba
isothermal applied field, or scattering of neutrons or elec
magnetic waves@26#. In the past several years, considera
progress has been achieved in the computation of the co
lation function of statistical mechanical systems@20,22#.
However, spin-spin correlation functions are exactly kno
only in a few models, including the two-dimensional Isin
model in zero magnetic field and at any temperatures@21#,
and the planar Ising model in a magnetic field and exactl
Tc @22#.

A long-standing problem of statistical mechanics is t
exact solution of the spin-spin correlation function for t
Ising model in an external magnetic field and at any tempe
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ture. In this paper, we develop a transfer matrix method
compute exactly the spin-spin correlation functions^sns0&
for the most general spin-S model on the Bethe lattice fo
any temperaturesT and external fieldh. The model includes
the Ising model@30# and the Blume-Emery-Griffiths~BEG!
model @31# as special cases. The correlation lengthj(T,h)
obtained from the spin-spin correlation function shows int
esting scaling and divergent behavior ash→0 and t→0,
where t5(T2Tc)/Tc @32#. Our results thus solve a long
standing puzzle in the critical phenomena of the Bethe lat
Ising model. Our method may be applied easily to oth
Bethe lattice spin models.

Although the free energy of the Cayley tree Ising mod
in zero external magnetic field is an analytic function of t
temperature, the magnetizationm and the magnetic suscep
tibility x of the central spins0 of the Bethe lattice Ising
model have singular behaviors with the critical expone
b51

2, d53, anda50 @30#. However, there is no previou
calculation which shows thatj of the Bethe lattice Ising
model has a singular behavior. Our work shows clearly thaj
diverges at the critical point ofm andx for the Bethe lattice
Ising model.

The difference between the Cayley tree and the Be
lattice was discussed by Baxter@30#. In the Cayley tree, the
surface plays a very important role because the sites on
surface comprise a finite fraction of the total sites even in
thermodynamic limit. As a consequence, the spin models
the Cayley tree exhibit quite unusual types of phase tra
tions without long-range order@23–25#; the calculated cor-
relation functions do not show a singular behavior@23–25#.
To overcome this problem, one usually considers only pr
erties of sites deep in the interior~away from the surface! of
the Cayley tree. The union of such equivalent sites, with
same coordination numberq, can be regarded as forming th
Bethe lattice@30#. Thus the Bethe lattice is assumed to ha
translational symmetry like any regular lattice.

In this paper, we demonstrate the crucial role of Be
lattice dimensionality in determining the critical behavior
the correlation length, and show clearly that correlati
length j diverges at the critical point ofm and x for the
Bethe lattice Ising model with critical exponentn51, which

,
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PRE 58 1645EXACT CORRELATION FUNCTIONS OF BETHE . . .
is different from the mean-field critical exponentn5 1
2 con-

sidered by Tsallis and Magalhe˜s in a recent review pape
@10#, but is consistent with the critical exponent of the loc
ization length associated with density-density correlator
the Bethe lattice Anderson model obtained by a supers
metry method@8#. Our result gives independent support
the idea that the mean-field approximation and Bethe lat
approach are not equivalent in principle@11#. In this paper
we also analyze exact spin-spin correlation function for
BEG model @31#, and find that at the tricritical point,j
;t21/2, with the tricritical exponentn t5

1
2 .

Thus we have solved a long-standing puzzle in the crit
phenomena of the Bethe lattice Ising model. Our appro
can be extended easily to other models~Potts, Ashkin-Teller,
etc.! on Bethe and Bethe-like lattices. In particular, our
sults for the Ising model on the Bethe lattice can be exten
easily to Husimi lattices, because they can be related w
each other in terms of the star-triangle transformation@30#.

The outline of the paper is as follows: In Sec. II the mo
general spin-S model is defined, and the spin-spin correlati
function of this model is evaluated in a closed form. In S
III we analyze the exact correlation function of the Bet
lattice spin-12 Ising model and discuss the critical propertie
In Sec. IV the critical behavior of the spin-spin correlatio
function is analyzed for the spin-1 Ising model on the Be
lattice. In Sec. V a brief discussion of our results is pre
sented.

II. MOST GENERAL SPIN- S MODEL

Ising-type models with a spin greater than1
2 have rich

fixed-point structures. The great interest in these mod
arises partly from the unusually rich phase transition beh
ior they display as their interaction parameters are var
and partly from their many possible applications.

A spin-1 Ising model was initially introduced by BEG
@31# in connection with phase separation and superfluid
dering in 3He- 4He mixtures. The BEG model has played
important role in the development of the theory of multicri
cal phenomena associated with various physical syst
@33#, and has been extensively investigated in the literat
@6,7#.

The spin-32 Ising model with dipolar and quadrupolar in
teractions was first introduced to explain phase transition
DyVO4 by Sivardiere and Blume@34#, and a different spin-
3
2 Ising model for ethanol-water-carbon-dioxide was intr
duced by Krinsky and Mukamel@35#. Another spin-32 Ising
model was investigated by Barreto and De Alcantra Bon
@36#.

Let us define the most general spin-S model by the
Hamiltonian

2bH5(̂
i j &

H1~si ,sj !1(
i

H2~si !, ~1!

whereb5(kBT)21, andsi is a spin variable which takes
value on$2S,2S11, . . . ,S21,S%. The first sum goes ove
all nearest-neighbor pairs of the Bethe lattice, and the sec
over all sites. H1(si ,sj ) contains all possible neares
neighbor pair interactions, and can be written as
-
n

-
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H1~si ,sj !5 (
m,n51

2S

Jmnsi
msj

n . ~2!

H2(si) includes all possible single ion interactions:

H2~si !5 (
m51

2S

hmsi
m . ~3!

There areS(2S11) independent nearest-neighbor coupli
constants (Jmn) in Eq. ~2!, and 2S external fieldshm in Eq.
~3!. Hamiltonian~1! can describe a variety of different mod
els. The partition function has the form

Z5(
$s%

expH (̂
i j &

H1~si ,sj !1(
i

H2~si !J . ~4!

The advantage of the Bethe lattice is that, for mod
formulated on it, exact recursion relations can be deriv
The calculation on a Bethe lattice is done recursively@30#.
When the Bethe lattice is ‘‘cut’’ apart at the central site 0,
separates intoq identical branches, each of which contai
q21 branches. Then the partition function of the model c
be written as

ZN5(
s

exp~2bH !5(
s0

exp$H2~s0!%gN
q ~s0!, ~5!

where s0 is a spin in the central site,N is the number of
generations (N→` corresponds to the thermodynam
limit !, and gN(s0) is in fact the partition function of one
branch. Each branch, in turn, can be cut along any site of
first generation which is nearest to the central site. The
pression forgN(s0) can therefore be written in the form

gN~s0!5(
s1

exp$H1~s0 ,s1!1H2~s1!%gN21
g ~s1!, ~6!

whereg5q21.
Consequently, we have 2S11 recursion relations for

gN(s0), where s0 takes values (2S,2S11, . . . .,S21,S).
After dividing each recursion relation by the recursion re
tion for gN(S), we have 2S recursion relations forxN(s0):

xN~s0!5

(
s1

exp$H1~s0 ,s1!1H2~s1!%xN21
g ~s1!

(
s1

exp$H1~S,s1!1H2~s1!%xN21
g ~s1!

, ~7!

where

xN~s0!5gN~s0!/gN~S! ~8!

and the equation forgN(S) is

gN~S!5gN21
g ~S!(

s1

exp$H1~S,s1!1H2~s1!%xN21
g ~s1!.

~9!

Since the right-hand side of Eq.~7! is bounded byxN , it
follows thatxN is finite for N→`. ThroughxN , obtained by
Eq. ~7!, one can express the densitymm5^(s0/S)m& of cen-
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tral site ~the symbol ^•••& denotes the thermal average!,
wherem take values from 1 to 2S:

mm5 K S s0

S D mL 5
1

Sm

(
s0

s0
mexp$H2~s0!%xN

q ~s0!

(
s0

exp$H2~s0!%xN
q ~s0!

, ~10!

and other thermodynamic parameters.
So we can say thatxN in the thermodynamic limit (N

→`) determines the states of the system. For this reason
recursion relations forxN given by Eq.~7! can be called the
equations of state for the spin-S model on the Bethe lattice
For example, at high temperatures the recursion equation~7!
tends to a fixed point, and therefore the system has an
he

p-

pointed magnetizationm. Equations~7! and ~10! are funda-
mental equations for the spin-S model on the Bethe lattice.

For calculating the spin-spin correlation function, it
now convenient to write down the expression for partiti
function in the following form

ZN5 (
s0s1 , . . . ,sn

expS (
i 50

n21

H1~si ,si 11!1(
i 50

n

H2~si !D
3gN

g ~s0!gN21
g21~s1! . . . gN2n11

g21 ~sn21!gN2n
g ~sn!,

~11!

wheren denotes the number of steps from the central po
0. Summing oversn ,sn21 , . . . ,s1 consistently, we obtain
Eq. ~5! again. Then the two-spin correlation function b
tweens0 andsn , G(n)5 (1/S2) (s0sn), can be written as
r the
agnetic

y
use the

erations

t

e

G~n!5
1

S2

(
s0s1 , . . . ,sn

s0snexpS (
i 50

n21

H1~si ,si 11!1(
i 50

n

H2~si !D xN
g ~s0!xN21

g21~s1!•••xN2n11
g21 ~sn21!xN2n

g ~sn!

(
s0s1 , . . . ,sn

expS (
i 50

n21

H1~si ,si 11!1(
i 50

n

H2~si !D xN
g ~s0!xN21

g21~s1!•••xN2n11
g21 ~sn21!xN2n

g ~sn!

. ~12!

We will show below that the calculation of^s0sn& can be performed by a transfer matrix method. Other techniques fo
calculation of the spin-spin correlation function are not able to give the correlation in the presence of an external m
field. For example, the results obtained in Refs.@23–25# are appropriate only forh strictly equal to zero without any symmetr
breaking effects. It should be noted that in order to obtain results which are relevant for the Bethe lattice, we must
proper thermodynamic limitN→`.

The properties of the Bethe lattice can be investigated by considering a Cayley tree with a very large number of gen
(N), and one looks only at the thermal ensemble of the sites in the interior part of the firstn generations. Then the limitN
→` is taken beforen→`.

We are interested in the case when the series of solutions of recursion relations given by Eq.~7! converges to a stable poin
asN→`. In the thermodynamic limit (N→`), we may expect thatxN2n does not depend onn, so thatxN2n andxN can be
regarded as the same fixed-point solutionsx of recursion relations given by Eq.~7!, which corresponds to the behavior in th
interior part of an infinite Cayley tree~i.e., the Bethe lattice!. In this case

lim
N→`

xN2n~s!5x~s!

for all finite n. Then the recursion equations~equations of state! becomes

x~s0!5

(
s1

exp$H1~s0 ,s1!1H2~s1!%xg~s1!

(
s1

exp$H1~S,s1!1H2~s1!%xg~s1!

, ~13!

and the spin-spin correlation functionG(n) given by Eq.~12! takes the form

G~n!5
1

S2

(
s0s1 , . . . ,sn

s0snexpS (
i 50

n21

H1~si ,si 11!1(
i 51

n

H2~si !D xg~s0!xg21~s1!•••xg21~sn21!xg~sn!

(
s0s1 , . . . ,sn

expS (
i 50

n21

H1~si ,si 11!1(
i 51

n

H2~si !D xg~s0!xg21~s1!•••xg21~sn21!xg~sn!

. ~14!



n

e
a
o

act
on

r
-

-

o-

-

PRE 58 1647EXACT CORRELATION FUNCTIONS OF BETHE . . .
The correlation function of Eq.~14! can be expressed i
the vector-matrix form. For this purpose, let us introduce
(2S11)3(2S11) matrixV and a (2S11)-component col-
umn vectorR. The elements ofV are given by

Vss85expS H1~s,s8!1
H2~s!1H2~s8!

2 D @x~s!x~s8!#~g21!/2,

~15!

wheres and s8 independently take valuesS,S21, . . . ,2S
11,2S. The vectorR and transposed vectorRT have ele-
ments

r s5expS H2~s!

2 D x~g11!/2~s!. ~16!

Let us also introduce the diagonal matrixS

S5S 1 0 ••• 0

0
S21

S
••• 0

A A � A

0 0 ••• 21
D .

With these definitions, we may rewrite Eq.~14! in the
vector-matrix form

G~n!5
RTSVnSR

RTVnR
. ~17!

The transfer matrixV is real symmetric (Vss85Vs8s), and
can be diagonalized by the transformation

P21VP5S l1 0 ••• 0

0 l2 ••• 0

A A � A

0 0 ••• l2S11

D ,

where P is a (2S11)3(2S11) matrix with the elements
pss8 and l1, l2, . . . , andl2S11 are the eigenvalues of th
matrix V. These eigenvalues can be obtained from the ch
acteristic equation. Then the spin-spin correlation function
Eq. ~17! can be written as

G~n!5
RTSPLP21SR

RTPLP21R
, ~18!

whereL is a (2S11)3(2S11) diagonal matrix

L5S l1
n 0 ••• 0

0 l2
n ••• 0

A A � A

0 0 ••• l2S11
n

D .
a

r-
f

After some algebraic manipulations, using Eqs.~13!, ~15!,
and ~16!, we may write the correlation function of Eq.~18!
as

G~n!5m1
21 (

k51

2S

Akl k
n , ~19!

wherel k[lk11 /l1. An explicit expression forAk is given in
the Appendix. It should be noted that the obtained ex
expression for the spin-spin correlation function depends
the ratios of the eigenvalueslk /l1. Thus Eq.~19!, together
with Eqs. ~10! and ~13!, give us full set of equations fo
investigation spin-S model on the Bethe lattice. In the fol
lowing we turn to various examples.

III. SPIN- 1
2 ISING MODEL

We first consider a spin-1
2 Ising Hamiltonian at a tempera

ture T and an external magnetic fieldh,

2bH54J(̂
i j &

sisj12h(
i

si , ~20!

wheresi5 1 1
2 or 2 1

2 and the first term describes the ferr
magnetic coupling (4J) between the spin at sitei and j .

For the magnetization (m152^s0&) of the spin in the cen-
tral site, from Eq.~10! we can obtain the following expres
sion:

m15
exp~2h!2xq

exp~2h!1xq
, ~21!

wherex is the fixed point of the recursion relations~13! in
the thermodynamic limit

xq21exp~22h!5
x exp~2J!21

exp~2J!2x
. ~22!

The two-spin correlation function for the spin-1
2 Ising

model can be obtained from Eq.~19!,

G~n!5m1
21A1S l2

l1
D n

, ~23!

with A1512m1
2 ~see the Appendix!, andl1 andl2 are the

eigenvalues of the 232 matrix V.
The elements ofV are given by

Vss85exp~4Jss81hs1hs8!@x~s!x~s8!#~g21!/2, ~24!

wheres ands8 independently take values61:

V5S V11 V12

V21 V22D .

The eigenvalues of the matrixV can be obtained from the
characteristic equation

l22l~V111V22!1V11V222V250. ~25!
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Using Eqs.~22! and ~24!, we find that

l152 sinh~2J!
exp~J1h!

@exp~2J!2x#
,

l25@2 cosh~2J!2x2x21#
exp~J1h!

@exp~2J!2x#
.

~26!

Thus the spin-spin correlation function can be expressed
actly as

G~n!5m1
21~12m1

2!ln, ~27!

where

l5
l2

l1
5

2 cosh~2J!2x2x21

2 sinh~2J!
, ~28!

m1 is the magnetization of the spin in the central site giv
by Eq. ~21!, and x is the solution of the recursion relatio
given by Eq.~22!.

It is well known that the Ising model on the Bethe latti
exhibits ferromagnetism, with a critical point ath50, x51,
andT5Tc , whereJc5 1

2 ln@q/(q22)#, and critical exponents
b, d, and a have the ‘‘classical’’ valuesb5 1

2 , d53, and
a50 @30#. Let us now consider the general behavior of t
spin-spin correlation function in the critical region.

First consider the casesh50 andT5Tc . From Eq.~27!,
we obtainG(n)5(q21)2n. Let us consider a Bethe lattic
with a coordination numberq, whose dimension is define
by dn5(lnCn /lnn) which tends to infinity withn→` for q
.2 and equals 1 forq52, whereCn5@q(q21)n22#/(q
22) is the total number of sites. We should note that foq
52 the Bethe lattice becomes the ordinary one-dimensio
chain. In the limit of largen, dn for all q.2 becomes

d5
n

ln n
ln~q21!.

Thus we can write, for largen,

G~n!5~q21!2n5n2d. ~29!

Near the critical point, setting, as usual,t5 (T2Tc)/Tc ,
we find that the spin-spin correlation function is

G~n!5

expS 2
n

j D
nd

, ~30!

where the correlation lengthj is given by

j5F ln
1

~q21!lG21

5F lnS 1

q21
coth

Jc

11t D G
21

;
q21

q~q22!Jc
t21. ~31!

Thus, we find that the correlation lengthj increases as the
critical point is approached according toj;t2n, with the
critical exponentn51. It is interesting to note that the co
relation lengthj shows interesting scaling and singular b
x-

n

al

-

havior near the critical point. While the Ising model on th
Bethe lattice exhibits, in general, a mean-field-like pha
transition with ‘‘classical’’ exponents, the critical behavio
of the correlation length near the transition point coincid
with the correlation length behavior in a one-dimension
chain with a critical exponentn51, which differs from its
‘‘classical value’’ n5 1

2 @10#. The similar behavior of the
localization length associated with the density-density c
relator can be observed in the Anderson model on the Be
lattice @8#.

If h andt are both sufficiently small in the critical region
then, based on Eqs.~22!, ~28!, and~31!, the general behavio
of the correlation lengthj should be described by a scalin
function F

j5t21F~ht2 3/2!, ~32!

whereF(x)5( f 11 f 2x2/3)21, with

f 15
q~q22!

2~q21!
ln

q

q22
and f 2

359
q~q22!

~q21!2
.

For a smallh.0 and t→0, from Eq. ~32! we obtain the
result

j5 f 2
21h22/3, ~33!

i.e., the critical exponent is23.
The bulk susceptibility per lattice sitex or the linear re-

sponse against the field is derived from Eq.~21! as x
5]m1 /]h

x5
]m1

]h
5x0F12

~q21!@2 cosh~2J!2x2x21#

2sinh~2J! G21

5
x0

12~q21!l
, ~34!

wherex0 is nonsingular part of the magnetic susceptibilit
and is given by

x052e22J
@2 cosh~2J!2x2x21#@2 exp~2J!2x2x21#

sinh~2J!@x1x2122 exp~22J!#2

5~12m1
2!~11l!. ~35!

Thus, the magnetic susceptibilityx can finally be written in
the simple form

x5
~12m1

2!~11l!

12~q21!l
. ~36!

By means of the fluctuation relationx5((G(n)2m1
2),

we can recover Eq.~36! through Eq.~27!. To prove this
statement let us consider in more detail the fluctuation re
tion

x5 lim
N→`

1

Ns
(
i j

1

S2
~^sisj&2^si&^sj&!, ~37!
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where the sum goes over all pairs of sites on the Bethe
tice, andNs is the total number of sites. To carry out th
summations in Eq.~37!, we first note that by definition al
sites on the Bethe lattice are equivalent, and consequen

^si&5^s0&,

(
i j

^sisj&5Ns(
j

^s0sj&.

Using these relations we may rewrite Eq.~37! as

x5 lim
N→`

(
j

1

S2
~^s0sj&2^s0&

2!

5 lim
n→`

(
j 51

n

cj@G~ j !2m1
2#, ~38!

wherecj is the number of sites which isj steps away from
the central site 0,

cj5q~q21! j 21 ~c051!, ~39!

G( j ) is the spin-spin correlation function given by Eq.~27!,
andm15^s0& is the magnetization of the spin in the centr
site.

Substituting Eqs.~27! and ~39! into Eq. ~38!, we find

x5 lim
n→`

~12m1
2!F11(

j 51

n

q~q21! j 21l j G
5 lim

n→`

~12m1
2!H 11l

12~q21!l
2ql

@~q21!l#n22

12~q21!l J .

~40!

It is now clear that the susceptibilityx diverges for
(q21)l>1, and given by Eq.~36! for (q21)l,1. From
Eq. ~36! we can easily establish the relation between
susceptibilityx and the correlation lengthj in the critical
region
t-

,

l

e

x;j.

IV. SPIN-1 ISING MODEL

Let us consider, for example, a spin-1 Ising model, wh
is known as the Blume-Emery-Griffiths~BEG! model @31#.
The BEG model on the Bethe lattice was studied in Re
@6,7#. The model has played an important role in the dev
opment of the theory of tricritical phenomena@33#.

The Hamiltonian of the spin-1 Ising model on the Bet
lattice is given by

2bH5J(̂
i j &

sisj1K(̂
i j &

si
2sj

22D(
i

si
21h(

i
si ,

~41!

whereb5(kBT)21 andsi511,0,21 is the spin variable a
site i . The first term describes the ferromagnetic coupling (J)
between the spin at sitesi and j , and the second term de
scribes the biquadratic coupling (K). Both interactions are
restricted to theq nearest-neighbor pairs of spins. The thi
term describes the single ion anisotropyD, and the last term
represents the effects of an external magnetic field (h).

This model has two order parameters: one is the ther
average of the total spinm15^s0& and the other is the qua
drupolar momentm25^s0

2& which reflects the possibility of
phase separation. These order parameters are expresse

m15
exp~h2D!yq2exp~2h2D!xq

11exp~h2D!yq1exp~2h2D!xq
, ~42!

m25
exp~h2D!yq1exp~2h2D!xq

11exp~h2D!yq1exp~2h2D!xq
. ~43!

From Eq.~12! we can obtain the following expression for th
first-neighbor spin-spin correlation function^s0s1&
^s0s1&5
~e2hy2g1e22hx2g!e~J1K22D!22xgyge~2J1K22D!

112~ehyg1e2hxg!e2D1~e2hy2g1e22hx2g!e~J1K22D!22xgyge~2J1K22D!
~44!
where

x5 lim
N→`

gN~2 !

gN~0!
and y5 lim

N→`

gN~1 !

gN~0!
.

Let us introduce the new variables

v5
x2y

2
and u5

x1y22

2
;

then we obtain
m152v
u~11a!1a

b1u21av2
, ~45!

m25
u~u11!1av2

b1u21av2
, ~46!

and

^s0s1&5
bu21a3~b11!v2

ab~b1u21av2!
, ~47!
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whereu andv are the solution of the recursion relation give
by Eq. ~13! in the thermodynamic limit (N→`):

exp~2h!5
u2av
u1avS u111v

u112v D q21

, ~48!

exp~2D!5
4~b2u!2

u22a2v2
@~u11!22v2#q21, ~49!

andb anda are the following constants:

b5exp~K !cosh~J!21,

a5
exp~K !cosh~J!21

exp~K !sinh~J!
.

It follows from Eq. ~19! that the spin-spin correlation
function for spin-1 Ising model can be written as

G~n!5m1
21 (

k51

2

AkS lk11

l1
D n

, ~50!

whereA1 andA2 take the forms~see the Appendix!

A15
l3~m22m1

2!2l1~^s0s1&2m1
2!

l32l2

and

A25
l2~m22m1

2!2l1~^s0s1&2m1
2!

l22l3
,

with m1, m2, and^s0s1& given by Eqs.~45!, ~46!, and~47!,
respectively. The eigenvaluesl1, l2, andl3 of the symmet-
ric 333 matrix V

V5S V11 V12 V13

V12 V22 V23

V13 V23 V33

D ,

can be obtained from the characteristic equation

~V112l!~V222l!~V332l!12V12V13V23

5V23
2 ~V112l!1V13

2 ~V222l!1V12
2 ~V332l!.

The elements of the matrixV are given by

Vss85expS Jss81Ks2s822D
s21s82

2
1h

s1s8

2 D
3@x~s!x~s8!#~g21!/2, ~51!

where s and s8 may independently take value
11, 0, and21.

Using Eqs.~48!, ~49!, and~51!, we find that

l15
b

b2u
, l2,35~C6AC22D !l1 , ~52!

where
C52
u

2b
1

~ab1a1b!~u21u2av2!

2ab@~u11!22v2#
,

and

D5
~b2u!~u22a2v2!

ab@~u11!22v2#
.

The global phase diagram of the spin-1 Ising model on
Bethe lattice was studied in detail in Refs.@6,7#. TheL line
of the phase transition in the (J, K, andD) space is given by
conditions

h50 and exp~DL!5
2~b2uc!

uc
~uc11!q21, ~53!

where

uc5
a

q212a
.

In terms of theT, DL /J, and K/J, Eq. ~53! of the L line
implies a relationT5Tc(DL /J,K/J), which locates the criti-
cal temperature as a function ofDL /J andK/J.

The critical line starts atDL→2`, Tc /J5 1
2 ln@q/(q22)#,

which corresponds to the critical temperature of the spi1
2

Ising model. We note that forD→2`, the statesi50 is
suppressed, and Hamiltonian~41! reduces to the spin-1

2 Ising
model with interactionJ and external magnetic fieldh. For
certain values ofK/J the system possesses a tricritical po
at which the phase transition changes from the second o
to the first order. A tricritical point satisfies the equation@7#

uc11

b2uc
5q221

q23

2q

1

uc
. ~54!

In particular,

J

Tt
5

1

2
ln

q~3q22!

3~q22!
when

K

J
51

and

J

Tt
5

1

2
ln

2q161A49q2236q136

6~q22!
when

K

J
53.

Let us now consider the general behavior of the spin-s
correlation function in the critical region. First consider th
caseh50 (v50); then we have

G~n!5
u~u11!

u21b
ln,

with

l5
l2

l1
5

u

a~u11!
.

On the critical line (T5Tc , h50, andD5DL) given by
Eq. ~53!, the spin-spin correlation function can be express
as
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G~n!5
uc~uc11!

uc
21b

F uc

a~uc11!G
n

5
a~q21!

a21b~q212a!
~q21!2n. ~55!

By analogy with the spin-12 case, we can write

G~n!5
a~q21!

a21b~q212a!
n2d, ~56!

where d is the dimension of the Bethe lattice. ForTc /J
5 1

2 ln@q/(q22)# , we obtainG(n)5(q21)2n, which corre-
sponds to the case of the spin-1

2 Ising model. In the critical
region,G(n) has an asymptotic decay of the form

G~n!;

expS 2
n

j D
nd

, ~57!

wherej is the correlation length and is given by

j5F ln
1

~q21!~l2 /l1!G
21

.

Near the critical L line, setting u2uc5(uc11)d, v
5(uc11)«, and T5Tc(11t), the h, D, and l2 may be
expanded, for smalld, «, andt, as

h5g«Fh0t2~a21!d1
~g221!

3
«21~a221!d2

2~g2a21!«2d1
g421

5
«4G , ~58!

D2DL52D0t1~g2a2b!d1g
g21

2
«21

a22b22g

2
d2

2~ga21!g«2d1g
g321

4
«4, ~59!

whereg5q21,a5(uc11)/uc , b5(uc11)/(b2uc),

h05
Jc~expKc2coshJc!2KcsinhJc

~expKccoshJc21!sinhJc
,

and

D05expKc

JcsinhJc1KccoshJc

expKccoshJc21
.

Consider the case whenh50 and D5DL . From Eqs.
~58! and ~59!, we obtain

c1t5c2d1c3d2 , ~60!

with

c15D01
3g

2~g11!
h0 , c25g212

uc11

b2uc
1

1

uc

g22

2~g11!
,

and

c35
a22b22g

2
2

3g

g11

1

uc
2

3g~g22g23!

4~g221!~g11!

1

uc
2

.

It is easy to see from Eqs.~54! and~60! that in all points on
the L line, t;d, except for the tricritical point, wheret
;d2.

Using a Taylor expansion of the expression for the cor
lation lengthj by small«, d, andt, and Eqs.~54! and~60!,
we find that the correlation lengthj increases as the critica
point is approached according toj;t21, with the critical
exponentn51, everywhere on theL line except the tricriti-
cal point, wherej;t21/2 with the tricritical exponentn t5

1
2.

V. SUMMARY AND DISCUSSION

Let us now briefly summarize our results. In this paper
consider the most general spin-S model on the Bethe lattice
in the external magnetic field, and use the transfer ma
approach to derive the spin-spin correlation function. T
general spin-S model includes the spin-1

2 simple Ising model
and BEG model as special cases. From the exact spin-
correlation functionsG(n) of the Bethe lattice Ising mode
and BEG model in an arbitrary magnetic fieldh and tem-
peratureT, the correlation lengthj has been determined ana
lytically. In the critical region the correlation lengthj of the
simple Ising model is inversely proportional to the distan
(T2Tc)/Tc from the critical point. Such a singular behavio
coincides with the correlation length behavior in the on
dimensional chain. We also obtain that near the transit
point the magnetic susceptibility is proportional to the cor
lation lengthj.

Recently, Gujrati@11# showed that in many cases the b
haviors on Bethe or Bethe-like lattices are qualitatively c
rect even when conventional mean-field theories fail. By
proper choice of these lattices, it is possible to satisfy fr
trations, gauge symmetries, etc., which are usually los
conventional mean-field calculations, because of the lack
correlations. Such correlations are present on the Bethe
lattices, and in this paper we have given the exact expres
for such correlations.

It should be noted that we can obtain the proper singu
behavior ofj because we have used the proper thermo
namic limit (N→`) to obtain the recursion equations an
correlation function, i.e., Eqs.~13! and ~14!, for the most
general spin-S model on the Bethe lattice, and we have de
onstrated the crucial role of Bethe lattice dimensionality
determining critical behavior of the correlation length.

In conclusion, it must be remarked that the transfer ma
methods discussed in this paper can be extended wit
difficulty to obtain correlation functions with singular corre
lation length for other spin models, e.g., Potts model,
multilayer Ising model, the Ising model with competin
nearest-neighbor and next-nearest-neighbor interactions,
on Bethe and Bethe-like structures. This approach should
applicable for gauge models on generalized multiplaqu
hierarchical structures as well.
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APPENDIX

The coefficientAk (k51,2,. . . ,2S) can be obtained by
solving the following system of linear algebraic equations

5
g15A11A21•••1A2S ,

g25A1l 11A2l 21•••1A2Sl 2S ,

A

g2S5A1l 1
2S211A2l 2

2S211•••1A2Sl 2S
2S21 ,

where

gk[^s0sk21&2m1
2 for k51,2,. . . ,2S,

and l k[lk11 /l1.
Let us introduce the elementary Lagrange interpolat

polynomials

Li~ l !5)
j 51
j Þ i

2S
l 2 l j

l i2 l j
5(

j 51

2S

ai j l
j 21, i 51,2,. . . ,2S,

which satisfyLi( l j )5d i j , whered i j is the symbol Kronecer
Now, it is evident that

Ak5(
j 51

2S

ak jgj , k51,2,. . . ,2S.

The elements ofak j are

ak j5
~21! jF j~k!

Pk~ l k!
,

wherePk( l ) is 2S21 degree polynomials defined by

Pk~ l !5)
i 51
iÞk

2S

~ l 2 l i !, k51,2,. . . ,2S

and F j (k) is the elementary symmetric function in 2S21
variablesl 1 ,l 2 , . . . ,l k21 ,l k11 , . . . ,l 2S:

F2S51,

F2S215 l 11•••1 l k211 l k111•••1 l 2S ,

A

F15 l 1 . . . l k21l k11 . . . l 2S .

Thus the coefficientsAk will take the form

Ak5

(
j 51

2S

~21! jF j~k!

)
i 51

2S

~ l k2 l i !

, iÞk.

Examples follow.
n

1. S5 1
2

A15g15^s0
2&2m1

2512m1
2 . ~A1!

For the spin-12 Ising model,^s0
2&[1.

2. S51

A15
l 2g12g2

l 22 l 1

5
l3~m22m1

2!2l1~^s0s1&2m1
2!

l32l2
~A2!

and

A25
l 1g12g2

l 12 l 2

5
l2~m22m1

2!2l1~^s0s1&2m1
2!

l22l3
, ~A3!

wherem25^s0
2&.

3. S53
2

^s0sn&2m1
25A1l 1

n1A2l 2
n1A3l 3

n ,

with

A15
l 2l 3g12~ l 21 l 3!g21g3

~ l 22 l 1!~ l 32 l 1!

and

A25A1~ l 1⇔ l 2!, A35A1~ l 1⇔ l 3!,

where g15^s0
2&2m1

2 , g25^s0s1&2m1
2, and g35^s0s2&

2m1
2.

4. S52

^s0sn&2m1
25A1l 1

n1A2l 2
n1A3l 3

n1A4l 4
n ,

A15
F1g12F2g21F3g32F4g4

~ l 22 l 1!~ l 32 l 1!~ l 42 l 1!
,

with

F15 l 2l 3l 4 , F25 l 2l 31 l 2l 41 l 3l 4 ,

F35 l 21 l 31 l 4 ,

F451

and

Ak5A1~ l 1⇔ l k! for k52,3,4,

where g15^s0
2&2m1

2 , g25^s0s1&2m1
2 , g35^s0s2&

2m1
2, andg45^s0s3&2m1

2.
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